A Personalized Researcher Recommendation Approach in Academic Contexts: Combining Social Networks and Semantic Concepts Analysis

نویسندگان

  • Yunhong Xu
  • Jin-Xing Hao
  • Raymond Y. K. Lau
  • Jian Ma
  • Wei Xu
  • Dingtao Zhao
چکیده

The rapid proliferation of information technologies especially the web 2.0 techniques have changed the fundamental ways how things can be done in many areas, including how researchers could communicate and collaborate with each other. The presence of the sheer volume of researcher and topical research information on the Web has led to the problem of information overload. There is a pressing need to develop researcher recommender systems such that users can be provided with personalized recommendations of the researchers they can potentially collaborate with for mutual research benefits. In an academic context, recommending suitable research partners to researchers can facilitate knowledge discovery and exchange, and ultimately improve the research productivity of both sides. Existing expertise recommendation research usually investigates into the expert finding problem from two independent dimensions, namely, the social relations and the common expertise. The main contribution of this paper is that we propose a novel researcher recommendation approach which combines the two dimensions of social relations and common expertise in a unified framework to improve the effectiveness of personalized researcher recommendation. Moreover, how our proposed framework can be applied to the real-world academic contexts is explained based on two case studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Personalized Academic Paper Recommendation System

Recommendation systems can take advantage of social media in various ways. One common example is combining social relationship into neighborhood-based recommendation systems, under the assumption that social relationship affects individuals’ interest or preference. Although this assumption may not be always true, this paper presents a realistic application, personalized academic paper recommend...

متن کامل

Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach

In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...

متن کامل

Adaptive Information Analysis in Higher Education Institutes

Information integration plays an important role in academic environments since it provides a comprehensive view of education data and enables mangers to analyze and evaluate the effectiveness of education processes. However, the problem in the traditional information integration is the lack of personalization due to weak information resource or unavailability of analysis functionality. In this ...

متن کامل

Adaptive Information Analysis in Higher Education Institutes

Information integration plays an important role in academic environments since it provides a comprehensive view of education data and enables mangers to analyze and evaluate the effectiveness of education processes. However, the problem in the traditional information integration is the lack of personalization due to weak information resource or unavailability of analysis functionality. In this ...

متن کامل

A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information

The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010